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The IGF-1 receptor and the related insulin receptor are sim-
ilar in structure and activate many of the same postreceptor
signaling pathways, yet they mediate distinct biological func-
tions. It is still not understood how the specificity of insulin
vs. IGF-1 signaling is controlled. In this study, we have used
cDNA microarrays to monitor the gene expression patterns
that are regulated by insulin and IGF-1. Mouse fibroblast NIH-
3T3 cells expressing either the wild-type human IGF receptor
or the insulin receptor were stimulated with either IGF-1 or
insulin, respectively. Thirty genes, 27 of which were not pre-
viously known to be IGF-1 responsive, were up-regulated by

IGF-1 but not by insulin. Nine genes, none of which was pre-
viously known to be insulin responsive, were up-regulated by
insulin but not by IGF-1. The IGF- and insulin-induced regula-
tion of 10 of these genes was confirmed by Northern blot anal-
ysis. Interestingly, more than half of the genes up-regulated by
IGF-1 are associated with mitogenesis and differentiation,
whereas none of the genes specifically up-regulated by insulin
are associated with these processes. Our results indicate that
under the conditions used in this study, IGF-1 is a more potent
activator of the mitogenic pathway than insulin in mouse fibro-
blast NIH-3T3 cells. (Endocrinology 142: 4969–4975, 2001)

THE POLYPEPTIDE HORMONES insulin and IGF-1 are
closely related factors that are essential for normal me-

tabolism and growth regulation. These peptides mediate their
biological effects by binding to their respective transmembrane
receptors on the surface of target cells. Insulin and IGF-1 are
capable of cross-reacting with the insulin and IGF-1 receptors
(IR and IGF-1R, respectively), but each receptor binds its own
ligand with a 100- to 1000-fold higher affinity than that of the
heterologous peptide. In addition, IGF-1, but not insulin, binds
to specific IGF-binding proteins that also regulate IGF-1 activity
(1). Although the IR and IGF-1R have certain shared functions,
both in vivo and in vitro studies suggest that each receptor also
has distinct biological roles (2–5). For example, IGF-1, acting
through its cognate receptor, is not able to stimulate lipogenesis
or to rescue the lethal phenotype in mice that lack the IR (6, 7).
Thus, although IGF-1Rs can mediate some metabolic actions of
IGF-1, the IGF-1R cannot fully compensate for the absence of
IRs. Also, IGF-1R-deficient mice exhibit severe abnormalities in
growth and differentiation and die at or immediately after birth
(8). This indicates that the IR cannot functionally substitute for
the lack of the IGF-1R. In addition, the IGF-1R can mediate
cellular transformation when expressed in cells derived from
IGF-1R-deficient mouse embryos, but the IR cannot (9).

Despite these divergent biological functions, the cell surface
IR and IGF-1R share a high degree of identity in their primary
and tertiary structures. Both receptors are composed of two
extracellular �-subunits that include the ligand-binding do-
main and two transmembrane �-subunits that possess intrinsic

tyrosine kinase activity (10, 11). The highest degree of homology
between the two receptors is found in the tyrosine kinase do-
main (about 84%), whereas the region of greatest divergence
between the IR and IGF-1R is found in the C-terminal domains,
which share about 44% identity (12). The IR and IGF-1R are
activated in a similar manner. Binding of the ligand to the
�-subunits activates the IR or IGF-1R, leading to autophos-
phorylation of tyrosine residues within the �-subunits and sub-
sequent enzymatic activation of the tyrosine kinase (10). All
conserved tyrosine residues that are phosphorylated in the IR
in response to insulin are also phosphorylated in the IGF-1R in
response to IGF-1 (13, 14). In addition to the similarity in re-
ceptor structure, the IR and IGF-1R activate a highly similar set
of downstream intracellular events. Both receptors phosphor-
ylate various substrates on the same set of tyrosine residues,
including IRS-1 (15, 16), IRS-2 (17, 18), IRS-3 (19, 20), IRS-4 (21),
Gab-1 (22, 23), and Shc (24, 25). Consequently, the IR and IGF-1R
activate many of the same signaling molecules, including those
of the Ras-Raf-MAPK pathway (26, 27) and the PI3K pathway
(28–30).

Thus, although both the IR and IGF-1R target many of the
same intracellular substrates and activate similar signaling
pathways, they are able to trigger distinct cellular responses.
Therefore, it is important to ask how the specificity of insulin
vs. IGF-1 signaling is achieved. In this study, we used cDNA
microarrays to simultaneously monitor the expression levels
of many genes to identify genes differentially regulated by
insulin and IGF-1. NIH-3T3 mouse fibroblasts overexpress-
ing either the wild-type human insulin or IGF-1 receptors
were stimulated with either insulin or IGF-1, respectively.

Abbreviations: EST, Expressed sequence tag; IGF-1R, IGF-1 receptor;
IR, insulin receptor.
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We have identified a total of 39 genes that were specifically
responsive to either IGF-1 or insulin. Most of these genes
were not previously known to be regulated by either insulin
or IGF-1. Analysis of these expression profiles revealed that
IGF-1 primarily induced genes involved in mitogenesis or
differentiation. In contrast, insulin specifically induced a
broader spectrum of genes that, as a group, did not fall into
any particular category. This study represents the first time
that cDNA microarray technology has been used to define
the specificity of insulin vs. IGF-1 signaling.

Materials and Methods
Cell culture

Two mouse fibroblast clones used in this study, NWTb3 and
NWTc43, were developed in our laboratory as previously described (31,
32). These NIH-3T3 cell lines express the normal human IGF-1R at a level
of about 4 � 105 receptors/cell (31, 32). IR cells are NIH-3T3 cells
expressing the human wild-type IR at a level of about 2 � 106 receptors/
cell (33). The IR cell line was a gift from Dr. S. Taylor (NIH, Bethesda,
MD). NWTb3, NWTc43, and IR cells were derived in the same parental
mouse embryonic fibroblast NIH-3T3 cell line that expresses about 16 �
103 IGF-1R/cell (31) and 5 � 103 IR/cell (33). All NIH-3T3 clones were
routinely cultured in DMEM supplemented with 10% heat-inactivated
FBS, 100 U/ml penicillin, 100 �g/ml streptomycin, 300 �g/ml l-
glutamine, and 500 mg/ml G418 (Geneticin, Life Technologies, Inc.,
Rockville, MD) in a humidified atmosphere of 95% air-5% CO2 at 37 C.
Cells were grown in 100-mm dishes, and once cells reached 75–80%
confluence, dishes were rinsed twice with PBS and switched to serum-
free medium containing 0.1% BSA, 20 mm HEPES, pH 7.5. Cells were
serum starved overnight and were then stimulated with either 50 nm
IGF-1 (for NWTb3cells) or 50 nm insulin (for IR cells) for 90 min at 37
C. The 90-min time period was chosen to minimize the chance of study-
ing immediate early response genes or secondary events. After stimu-
lation, cells were harvested and total RNA was extracted from cells using
the TRIzol reagent (Life Technologies, Inc.), as described below.

cDNA microarrays

The mouse array is composed of 3899 detector elements. Of these, 315
are unclustered expressed sequences tags (ESTs), 630 are clustered ESTs,
and 3004 are clustered, named genes. There is significant redundancy in
the named gene portion of the set, with 2221 unique clusters represented.
The clones were obtained from Research Genetics, Inc. (Huntsville, AL).
PCR products from these clones were prepared and printed onto glass
slides according to previously described protocols (34, 35).

RNA preparation, labeling, hybridization, and scanning

Total RNA was prepared from NWTb3 and IR cells by subjecting
them to two extractions with TRIzol (Life Technologies, Inc.) according
to manufacturer’s recommended conditions. Total RNA was dissolved
in 500 �l of water and concentrated to 17 �l using Microcon 30 (Amicon,
Inc., Beverly, MA) before fluorescence labeling. Total RNA (100–200 �g)
was converted to fluorescently labeled cDNA with either Cy-3 or Cy-5
(Amersham Pharmacia Biotech, Piscataway, NJ) and SuperScript II re-
verse transcriptase (Life Technologies, Inc.) exactly as described previ-
ously (34, 35). Imaging and image analysis were performed exactly as
previously described (34, 35). Differentially expressed genes were de-
fined as outliers if the calibrated red to green ratio was greater than 2.0
for all genes that had a minimal intensity of 2000 in either channel. The
cutoff value of 2-fold is conventionally used by other investigators (36).

DNA sequencing and sequence analysis

The identities of differentially expressed genes in response to IGF-1
and insulin obtained after array hybridization were verified by DNA
sequencing using vector-specific primers (either M13 forward or reverse
primers). Cycle sequencing reactions with Taq DNA polymerase were
performed with fluorescently labeled dideoxynucleotides (Dye-termi-
nator, PE Applied Biosystems, Foster City, CA). Sequence database

searches were performed with BLAST sequence comparison programs
at the National Center for Biotechnology Information (http:/www.
ncbi.nlm.nih.gov/BLAST). PCR products were used as a probe for the
Northern blot analysis.

Northern blot analysis

Cells overexpressing the IGF-1R or IR were incubated in either the
absence or presence of IGF-1 (NWTb3 or NWTc43 cells) or insulin (IR
cells). Total RNA was isolated from these cells using the TRIzol reagent
(Life Technologies, Inc.) as described above. Twenty micrograms of total
RNA was separated by denaturing formaldehyde electrophoresis and
then transferred overnight by capillary blot to positively charged nylon
membranes. RNA was immobilized to membranes by UV cross-linking.
Blots were prehybridized for 2 h at 42 C in a buffer containing 50%
formamide, 5� Denhardt’s solution, 1% SDS, 5� sodium saline citrate,
and 100 �l/ml salmon sperm. Blots were then hybridized overnight at
42 C with 2 � 106 cpm/ml [32P]dCTP-labeled DNA probe in a buffer
containing 50% formamide, 2.5� Denhardt’s solution, 1% SDS, 5� so-
dium saline citrate, 10� dextran sulfate, and 100 �l/ml salmon sperm.
The probes were generated from DNA by PCR from sequence-verified
IMAGE Consortium clones (Research Genetics, Inc.) and 32P-labeled
using the Rediprime labeling kit (Amersham Pharmacia Biotech). Fi-
nally, blots were washed under conditions of high stringency, and the
32P-labeled probe that was hybridized was quantified using a Phospho-
rImager apparatus (FujiFilm, Stamford, CT). Autoradiography was also
carried out at �70 C. The integrity and the quantification of different
transcripts were assessed using the human RNA 18S probe from Am-
bion, Inc. (Austin, TX).

Results and Discussion

Despite the high degree of similarity in structure and sub-
strate specificity, the IR and the IGF-1R do not appear to have
redundant functions in vivo. However, the biochemical and
physiological comparison of the two receptors is complicated
by the fact that each ligand can cross-react with the other re-
ceptor and the fact that heterodimeric receptors can form when
both receptors are expressed in the same cells. To overcome
these problems, we have compared the effects of insulin and
IGF-1 in NIH-3T3 fibroblasts overexpressing either human IR
or IGF-1R. Cells overexpressing the IGF-1R (NWTb3 cells) or
the IR (IR cells) were incubated in the presence or absence of
IGF-1 or insulin, respectively. RNA was extracted and prepared
for hybridization with the cDNA microarray as described in
Materials and Methods. The color images of the hybridization
results were generated by representing the Cy-3 fluorescent
image as green and the Cy-5 fluorescent image as red and then
merging the two color images. To ensure reproducibility of the
microarray results, we repeated each experiment twice using
different total RNA samples. The spots with signal intensities
that were at least 2-fold different from control levels in both
experiments were designated as genes that are differentially
expressed in response to IGF-1 or insulin. Fig. 1 represents a
typical hybridization result in which the cDNA probe derived
from unstimulated NWTb3 cells was labeled with Cy-3 fluo-
rochrome (green) and the cDNA probe from IGF-1-stimulated
NWTb3 cells was labeled with Cy-5 fluorochrome (red). Spots
with fluorescent signals that are strongly red (e.g. TDAG
and Daxx, as shown in Fig. 1) indicate that expression of these
genes is increased in response to IGF-1. Identical microarray
plates were hybridized with similar fluorescently labeled
cDNA probes derived from RNA from control (serum-
deprived) and insulin-stimulated IR cells. The signal intensity
ratios obtained for insulin vs. control in IR cells were compared
with those obtained for IGF-1 vs. control in NWTb3 cells.
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Of the 2221 genes on the cDNA microarrays, we found that
30 genes were significantly induced by IGF-1 but not by insulin
(Table 1), whereas only 9 genes and 1 EST were specifically
up-regulated by insulin but not by IGF-1 (Table 2). Surprisingly,
27 of the 30 genes induced by IGF-1 had not been previously
reported as IGF-1-responsive genes. Similarly, none of the
genes induced by insulin were previously identified as insulin-
responsive genes. We used Northern blots to confirm the
changes in mRNA levels of 10 genes identified in the cDNA
microarray analysis (Fig. 2). For Northern blots, probes derived
from PCR products were amplified from plasmid DNAs con-
taining the appropriate cDNAs. For all Northern blot experi-
ments, RNA was isolated from separate sets of cells that were
treated with IGF-1 or insulin (i.e. these experiments were in-
dependent of those used for the microarray technology). More-
over, we studied a second clone, NWTc43, that expresses sim-
ilar levels of the wild-type human IGF-1R as NWTb3 (31). Our
Northern blot results confirmed that all selected genes were
regulated by IGF-1 and insulin, as predicted by the microarray
analysis (Fig. 2). These results demonstrate that the cDNA mi-
croarray experiments accurately identified changes in gene ex-
pression mediated by IGF-1 and insulin. These findings are
consistent with previous studies indicating that cDNA microar-
rays can predict changes in gene expression observed by North-
ern blot with high reliability (35–37). The microarray results also
indicated that 13 genes were up-regulated and 3 genes were
down-regulated by insulin and IGF-1, respectively (Tables 3
and 4). All of the genes that were identified as up-regulated by
both insulin and IGF-1 in the cDNA microarray analysis appear
to be more strongly stimulated by IGF-1 than by insulin (Table
3). This is not surprising, because it has been well established
that IGF-1 is a more potent mitogen than insulin. It is important
to note that the ratios obtained for some genes are quite close
to the 2-fold cutoff value (e.g. MAK16, DBPA, and EDR in Table
1). Consequently, until confirmed by Northern blot analysis,
these results must be interpreted with caution. The genes that

were down-regulated by both hormones were similarly regu-
lated by both IGF-1 and insulin (Table 4). These genes were not
studied further because we were specifically interested in genes
that were differentially regulated by IGF-1 and insulin. Our
results are especially pertinent in view of the recent study by
Fambrough and co-workers (38). In that study, the same set of
66 immediate early genes was found to be induced in fibroblasts
by both the platelet-derived growth factor-� receptor and the
fibroblast growth factor receptor, and a subset of these genes
was induced by the epidermal growth factor receptor. These
investigators concluded that an overlapping group of imme-
diate early genes are induced by related growth factors that
nevertheless have different biological actions. In contrast, in the
present study, we found a number of genes to be differentially
regulated by IGF-1 and insulin in fibroblasts.

The genes that were identified as regulated by IGF-1 and
insulin are involved in various cellular functions, including cell
proliferation, differentiation, and apoptosis, all of which are
consistent with the known functions of these growth factors
(Tables 1 and 2). Despite the known metabolic functions of these
growth factors, insulin and IGF-1 significantly regulated only
two genes that are associated with cellular metabolism. The cell
type used in these studies could be related to this result. Fi-
broblasts are proliferative cells that may not have a well estab-
lished cellular machinery to mediate metabolic functions, at
least compared with other insulin-responsive cell types, such as
adipocytes, myocytes, or hepatocytes. Interestingly, 18 of 30
genes up-regulated by IGF-1 in this study were previously
reported to be involved in mitogenesis and differentiation in
other contexts (Table 1). Only three of these genes, the Jun
oncogene (39, 40), �-5 integrin (41), and early growth response-1
(42) have been previously reported to be responsive to IGF-1.
For example, it is known that IGF-1 increases the level of �-5
integrin protein in lens epithelial cells, whereas insulin down-
regulates �-5 integrin in normal human fibroblasts (41). In ac-
cordance with these findings, we found that IGF-1 but not

FIG. 1. Representative portion of cDNA
microarray showing the effect of IGF-1
on gene expression patterns in NWTb3
cells. RNA from serum-starved NWTb3
cells was used to prepare cDNA labeled
with Cy3-deoxyuridine triphosphate,
and RNA from treated IGF-1 NWTb3
cells was used to prepared cDNA la-
beled with Cy5-deoxyuridine triphos-
phate. The control sample (serum-
starved cells) corresponds to the green
fluorochrome, and the experimental
sample (cells treated with 50 nM IGF-1)
corresponds to the red fluorochrome.
These probes were mixed and cohybrid-
ized to the microarray as described in
Materials and Methods. In this repre-
sentative example, mRNAs that were
up-regulated in response IGF-1 in
NWTb3 cells are visualized as red spots.
Two genes up-regulated by IGF-1, the
TDAG51 and Daxx genes, are indicated.
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insulin increased levels of �-5 integrin gene expression in
mouse fibroblast (NIH-3T3) cells. Interestingly, genes that in-
hibit cell growth as well as genes that enhance cell growth were
simultaneously activated in response to IGF-1 stimulation. For
example, IGF-1 treatment increased the expression of the early
growth response-1 transcription factor, which is associated with
proliferation, but it also increased the expression of nerve
growth factor-induced clone A-binding protein 2, which is a
corepressor protein that can repress the transcription of genes

targeted by early growth response-1 (43). Similarly, although
IGF-1 induces proliferation, IGF-1 also increased expression of
the Tel oncogene, which has been shown to retard cell prolif-
eration of many cell types, particularly fibroblasts (44). These
findings suggest that there are many antiproliferative processes
that are regulated by IGF-1 and that cell growth is a tightly
controlled process.

In our cDNA microarray analysis, IGF-1 also increased the
expression of several genes involved in specific cellular pro-

TABLE 1. Genes up-regulated specifically by IGF-1

Symbol Clone number IGF-1 Insulin

Mitogenesis and differentiation
IL-3 receptor, �-chain IL-3R� 445664 5.32 1.23
Colony-stimulating factor, macrophage mCSF 634838 4.12 1.32
Glial cell line-derived neurotrophic factor GNDF 425671 3.96 0.80
Integrin �-5 (fibronectin receptor) I�5 476908 3.55 0.94
Early growth response-1 EGR-1 608153 3.65 0.58
Jun oncogene JUN 949554 3.01 1.11
Twist gene TWIST 479367 2.95 1.54
Forkhead homolog 14 FKH-14 541099 2.91 1.08
Wee 1-like protein kinase Wee-1 539548 2.75 1.95
IGF binding protein 10 IGF-BP10 557055 2.41 1.48
SRY box-containing gene 2 SRY-2 351033 2.39 0.59
IL-4 receptor � IL-4R� 721594 2.30 0.80
DNA-binding protein A DBPA 602275 2.29 1.65
MAK16 MAK16 537328 2.27 1.70
Nerve growth factor-induced clone A-binding protein 2 NGFI-A BP-2 476298 2.31 1.25
Mothers against decapentaplegic-5 MAD5 551401 2.24 1.49
Early development regulator EDR 616348 2.22 1.67
Ets variant gene 6 (TEL oncogene) TEL 402134 2.21 0.97

Apoptosis
T cell death-associated gene 51 TDAG51 694076 9.00 1.52
Fas-binding protein (Daxx) Daxx 736796 5.99 1.55

Cellular processes
Variant histone H3.3 vH3.3 618380 3.30 1.39
Kinesin heavy chain member 1A Kin1A 492514 2.83 0.67
Chromatin nonhistone high mobility group protein HGM-I(Y) 616054 2.64 1.15
Eukaryote release factor 1 eRF-1 572924 2.34 1.19
DEAD (aspartate-glutamate-alanine-aspartate) box polypeptide 5 DEAD5 537478 2.22 1.24
Splicing factor, arginine/serine 3 SRp20 595904 2.41 1.69

Metabolism
Gibbon ape leukemia virus receptor-1 GLVR-1 335579 4.88 1.20
Glycerol phosphate dehydrogenase 1, mitochondrial GPDH 351221 2.74 0.91

Others
Nuclear factor erythroid derived 2, like 2 NF-E2 635541 2.90 0.86
Immediate early protein Gly96 Gly96 579574 2.46 1.13

TABLE 2. Genes up-regulated specifically by insulin

Symbol Clone number IGF-1 Insulin

Morphogenesis and development
�-B crystallin CRY�B 605970 1.56 2.28
Calponin H1, smooth muscle CNNh1 557012 1.27 2.10

Apoptosis
Apoptotic protease-activating factor 1 APAF-1 657503 1.33 2.20
Seven in absentia 1B SIAH-1B 618379 1.30 2.04

Cellular processes
Microtubule-associated protein tau TAU 552102 1.36 2.23
Integrin �-6 I�6 584662 1.63 2.05
Cytochrome P450, 2d10 1.46 2.34

Others
PRL receptor PRL-R 520835 0.72 3.74
EST, highly similar to ENV polyprotein precursor 539102 1.79 2.20
�-Aminolevulinate dehydratase DAH 518879 1.53 2.13
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cesses, including cell division, chromosome partitioning, and
protein translation, which are all critical for cell growth (Ta-
ble 1). It has been well established that IGF-1 regulates the
determination of several cell lineages. Indeed, we found that
IGF-1 induced the expression of several transcription factors
involved in cell differentiation, including Forkhead homolog
14 (45), SRY box-containing gene 2 (46), and Twist (47). In-
sulin treatment increased the expression of �-B crystallin (48)
and calponin H1 (49), which are involved in the organization
and protection of myofibrillar structure. Although insulin-
responsive genes are not generally classified as mitogenic,

we cannot exclude a role for insulin in cell growth. However,
our data suggest that IGF-1 and insulin could exert distinct
regulatory effects on cellular proliferation, differentiation,
and morphogenesis. It is well known that the IGF-1R plays
an antiapoptotic role in fibroblasts (50). However, in the
mouse blastocyst, high concentrations of IGF-1 can actually
trigger apoptosis by down-regulating the IGF-1R (51). In this
study, we found that IGF-1 increased expression of the an-
tiapoptotic Twist gene and concomitantly increased expres-
sion of two proapoptotic genes, T cell death-associated gene
51 and Fas-binding protein genes. This further suggests that

FIG. 2. Northern blots of genes differ-
entially induced by IGF-1 or insulin.
Northern blots were used to confirm the
changes in gene expression induced by
IGF-1 and insulin on cDNA microar-
rays. NIH-3T3 cells expressing the hu-
man IGF-1R [NWTb3 (B3) and NWTc43
(C43) cells] or NIH-3T3 cells expressing
the human IR (IR) were starved for 16 h
and then incubated in the presence or
absence of 50 nM IGF-1 or insulin for 90
min, respectively. RNA was then ex-
tracted from cells, and samples contain-
ing 20 �g of total RNA were analyzed by
Northern blotting as described in Ma-
terials and Methods. Probes were gen-
erated from DNA fragments from the
indicated genes as described. In each
case, the membrane was stripped and
reprobed with the 18S RNA to confirm
equal loading and to quantify signal in-
tensity. All Northern blot procedures
were repeated twice. Data are shown as
mean (fold increase from control) � SEM
for IGF-1 (n � 4, the values for the two
clones from two separate experiments
were combined) and insulin (n � 2, i.e.
two separate experiments) as indicated.
The abbreviations used for the various
genes are defined in Tables 1 and 2.

TABLE 3. Genes up-regulated by both IGF-1 and insulin

Symbol Clone number IGF-1 Insulin

Parvalbumin PAR 493697 3.30 2.31
Myosin heavy chain, skeletal muscle MyoHC 440791 3.15 2.30
Zinc finger protein 90 ZFP-90 463944 2.82 2.32
TNF receptor 1a TNF-R1a 552363 2.80 2.35
EST 584397 2.74 2.20
EST 585341 2.41 2.20
Splicing factor, arginine/serine-rich 10 SRp10 540863 2.40 2.30
Colony-stimulating factor, granulocyte receptor CSF,GR 586299 2.40 2.25
Kidney androgen-regulated protein KARp 581191 2.40 2.20
Tubulin, �-2 Tub2 585507 2.35 2.22
Adenine nucleotide translocator-2, fibroblast ANT-2 585992 2.30 2.24
Von Hippel-Lindau syndrome homolog VHL 573081 2.22 2.24
Transgelin TRANS 603669 2.20 2.24
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during stimulation with IGF-1, the balance between cell
death and cell survival is tightly regulated. We have used
Northern blots to verify the regulation of many, but not all,
of the 39 IGF-1- and insulin-regulated genes identified on
microarrays. In some cases, the ratio of signal intensities on
microarrays was slightly greater than the threshold level of
2.0. The regulation of �-6 integrin (up-regulated 2.05-fold by
insulin) and Wee 1-like protein kinase (up-regulated 2.75-
fold by IGF-1) was confirmed by Northern blot analysis,
suggesting that these relatively modest changes reflect au-
thentic changes in gene expression. However, other genes
that were modestly regulated by microarray analysis (�2-
fold) have not yet been confirmed by Northern blot, includ-
ing MAK16, DPA, EDR, and an EST highly similar to ENV.
Thus, the data for this group of genes must be interpreted
with caution. Another caveat to be considered is that the
various cell lines express different levels of IR and IGF-1R
and these differences could affect responses, although the
concentration of ligand was physiological and not likely to
bind the other receptor. IGF binding proteins are expressed
at relatively low levels compared with IGF-1Rs in the NWTb3
cells and are also unlikely to affect the responses to IGF-1.

In summary, many genes were differentially regulated by
equivalent doses of IGF-1 and insulin (i.e. NWTb3 cells or IR
cells were exposed for 90 min to either 50 nm IGF-1 or 50 nm
insulin). Thus, the specificity of insulin and IGF-1 signaling
may be mediated, at least in part, by the induction of different
patterns of gene expression by activation of the IR and IGF-
1R. Interestingly, some studies, albeit in other cell types and
under different conditions, have shown that IGF-1 and in-
sulin can act on the same genes but with different outcomes.
For example, in murine keratinocytes, insulin induces the
expression of classic markers of differentiation, whereas
IGF-1 stimulation inhibits the expression of these same mark-
ers (52). Also, in the developing eye lens of the chicken, the
level of �-crystallin induced by IGF-1 is greater and occurs
more quickly than that induced by insulin (53). To explain
some of the differential effects of insulin and IGF-1, some
investigators have searched for substrates that may be spe-
cific for either receptor. For example, Najjar et al. (54) showed
that the IR but not the IGF-1R interacts with and phosphor-
ylates pp120 (also known as C-CAM or Caecam-1), a plasma
membrane glycoprotein that plays a role in endocytosis of
the insulin/IR complex. Laviola et al. (55) showed that in
mouse fibroblasts, the adapter protein Grb10 preferentially
associates with the IR compared with the IGF-1R and there-
fore might contribute to the specificity of the biological ef-
fects of the two hormones. Some reports also speculate that
the IR and IGF-1R could activate different signaling path-
ways to trigger either the same or different responses. Other
theories have also been proposed to explain the difference
between IR and IGF-1R signaling. Some have suggested that

the different patterns of tissue distribution of these receptors
influence the physiological responses that they exert (56),
and others have argued for a functional role of hybrid re-
ceptors (57). Finally, some investigators have favored the
explanation that the different receptors generate qualita-
tively different signals, for example, in the subcellular dis-
tribution (58) or duration (59) of the stimulus. In our study,
the differential effect maybe attributable to the fact that the
basal levels in the various cell lines were different; glial cell
line-derived neurotrophic factor and Gibbon ape leukemia
virus receptor-1 in the IR cells and �-6 integrin in the NWTB3
cells were quite increased. Consequently, the stimulation by
the ligands may be blunted. Finally, it is important to note
that in addition to the distinct effects of IGF-1 and insulin, we
also found that a number of genes are similarly increased or
decreased by these two hormones (Tables 3 and 4).

In conclusion, we have used cDNA microarray technology to
compare the gene expression profiles induced by insulin and
IGF-1. We identified 39 target genes, most of which have not
been previously described. Thirty genes were up-regulated spe-
cifically by IGF-1 and not by insulin, whereas only 9 genes were
up-regulated by insulin and not by IGF-1. Half of the genes
specifically regulated by IGF-1 are associated with mitogenesis
and differentiation. Thus, under equivalent conditions in
mouse fibroblast NIH-3T3 cells, IGF-1 appears to induce more
genes associated with mitogenesis than does insulin. Further-
more, our findings increase the known set of genes regulated
by IGF-1 and insulin. Moreover, in a separate study, we showed
that Twist, which was identified by microarray analysis as a
specific IGF-1-responsive gene, is involved in the antiapoptotic
effects of the IGF-1R in mouse fibroblasts (60). Thus, charac-
terization of the gene expression profiles induced by insulin and
IGF-1 has allowed us to identify a novel component involved
in one of the critical functions of the IGF-1R. In future studies,
it will be of interest to examine the specific roles played by the
other genes identified in this study in the overall biological
functions of the IGF-1R and IR.
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